Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
Acta Pharmacol Sin ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438579

RESUMO

Maintenance of intestinal barrier function contributes to gastrointestinal homeostasis and therefore cardiovascular diseases. A number of studies show that intestinal permeability is affected by excessive inflammatory responses. Krüppel-like factor (KLF) 4 is one of the critical transcriptional factors, which controls multiple immune responses. In this study we investigated the role of KLF4 in regulating intestinal inflammation and permeability during the atherosclerotic process. Atherosclerotic model was established in ApoE-/- mice by feeding a high fat high cholesterol (HFHC) diet. We showed that colon expression levels of KLF4 and tight junction proteins were significantly decreased whereas inflammatory responses increased in atherosclerotic mice. Overexpression of colon epithelial Klf4 decreased atherosclerotic plaque formation and vascular inflammation in atherosclerotic mice, accompanied by remarkable suppression of intestinal NF-κB activation. We found that overexpression of epithelial Klf4 in atherosclerotic mice significantly increased intestinal tight junction expression and ameliorated endotoxemia, whereas replenishment of LPS abolished these benefits. Overexpression of Klf4 reversed LPS-induced permeability and downregulation of ZO-1 and Occludin in Caco-2 cells in vitro. HFHC diet stimulated the expression of epithelial microRNA-34a, whereas silence of epithelial Klf4 abolished the benefits of microRNA-34a sponge, a specific miR-34a inhibitor, on intestinal permeability and atherosclerotic development. A clinical cohort of 24 atherosclerotic patients supported colon KLF4/NF-κB/tight junction protein axis mediated intestine/cardiovascular interaction in patients with atherosclerosis. Taken together, intestinal epithelial KLF4 protects against intestinal inflammation and barrier dysfunction, ameliorating atherosclerotic plaque formation.

2.
World J Stem Cells ; 16(2): 176-190, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38455106

RESUMO

BACKGROUND: Cartilage defects are some of the most common causes of arthritis. Cartilage lesions caused by inflammation, trauma or degenerative disease normally result in osteochondral defects. Previous studies have shown that decellularized extracellular matrix (ECM) derived from autologous, allogenic, or xenogeneic mesenchymal stromal cells (MSCs) can effectively restore osteochondral integrity. AIM: To determine whether the decellularized ECM of antler reserve mesenchymal cells (RMCs), a xenogeneic material from antler stem cells, is superior to the currently available treatments for osteochondral defects. METHODS: We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70% confluence; 50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition. Decellularized sheets of adipocyte-derived MSCs (aMSCs) and antlerogenic periosteal cells (another type of antler stem cells) were used as the controls. Three weeks after ascorbic acid stimulation, the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints. RESULTS: The defects were successfully repaired by applying the ECM-sheets. The highest quality of repair was achieved in the RMC-ECM group both in vitro (including cell attachment and proliferation), and in vivo (including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues). Notably, the antler-stem-cell-derived ECM (xenogeneic) performed better than the aMSC-ECM (allogenic), while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells. CONCLUSION: Decellularized xenogeneic ECM derived from the antler stem cell, particularly the active form (RMC-ECM), can achieve high quality repair/reconstruction of osteochondral defects, suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.

3.
Adv Sci (Weinh) ; : e2306050, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38544344

RESUMO

COVID-19 can lead to adverse outcomes in patients with pre-existing diseases. Azvudine has been approved for treating COVID-19 in China, but the real-world data is limited. It is aimed to investigate the efficacy of Azvudine in patients with COVID-19 and pre-existing cardiovascular diseases. Patients with confirmed COVID-19 and pre-existing cardiovascular diseases are retrospectively enrolled. The primary outcome is all-cause death during hospitalization. Overall, 351 patients are included, with a median age of 74 years, and 44% are female. 212 (60.6%) patients are severe cases. Azvudine is used in 106 (30.2%) patients and not in 245 (69.8%). 72 patients died during hospitalization. After multivariate adjustment, patients who received Azvudine a lower risk of all-cause death (hazard ratio: 0.431; 95% confidence interval: 0.252-0.738; p = 0.002) than controls. Azvudine therapy is also associated with lower risks of shock and acute kidney injury. For sensitivity analysis in the propensity score-matched cohort (n = 90 for each group), there is also a significant difference in all-cause death between the two groups (hazard ratio: 0.189; 95% confidence interval: 0.071-0.498; p < 0.001). This study indicated that Azvudine therapy is associated with better outcomes in COVID-19 patients with pre-existing cardiovascular diseases.

4.
Oncotarget ; 15: 238-247, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502947

RESUMO

A clinical trial was conducted to assess the feasibility of enrolling patients with Stage II or III hormone receptor positive (HR+)/HER2-negative breast cancer to pre-operative dual PD-L1/CTLA-4 checkpoint inhibition administered prior to neoadjuvant chemotherapy (NACT). Eight eligible patients were treated with upfront durvalumab and tremelimumab for two cycles. Patients then received NACT prior to breast surgery. Seven patients had baseline and interval breast ultrasounds after combination immunotherapy and the responses were mixed: 3/7 patients experienced a ≥30% decrease in tumor volume, 3/7 a ≥30% increase, and 1 patient had stable disease. At the time of breast surgery, 1/8 patients had a pathologic complete response (pCR). The trial was stopped early after 3 of 8 patients experienced immunotherapy-related toxicity or suspected disease progression that prompted discontinuation or a delay in the administration of NACT. Two patients experienced grade 3 immune-related adverse events (1 with colitis, 1 with endocrinopathy). Analysis of the tumor microenvironment after combination immunotherapy did not show a significant change in immune cell subsets from baseline. There was limited benefit for dual checkpoint blockade administered prior to NACT in our study of 8 patients with HR+/HER2-negative breast cancer.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Resultado do Tratamento , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Terapia Neoadjuvante/efeitos adversos , Microambiente Tumoral
5.
Poult Sci ; 103(3): 103376, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228059

RESUMO

Wenchang chicken, a prized local breed in Hainan Province of China renowned for its exceptional adaptability to tropical environments and good meat quality, is deeply favored by the public. However, an insufficient understanding of its population architecture and the unclear genetic basis that governs its typical attributes have posed challenges in the protection and breeding of this precious breed. To address these gaps, we conducted whole-genome resequencing on 200 Wenchang chicken samples derived from 10 distinct strains, and we gathered data on an array of 21 phenotype traits. Population genomics analysis unveiled distinctive population structures in Wenchang chickens, primarily attributed to strong artificial selection for different feather colors. Selection sweep analysis identified a group of candidate genes, including PCDH9, DPF3, CDIN1, and SUGCT, closely linked to adaptations that enhance resilience in tropical island habitats. Genome-wide association studies (GWAS) highlighted potential candidate genes associated with diverse feather color traits, encompassing TYR, RAB38, TRPM1, GABARAPL2, CDH1, ZMIZ1, LYST, MC1R, and SASH1. Through the comprehensive analysis of high-quality genomic and phenotypic data across diverse Wenchang chicken resource groups, this study unveils the intricate genetic backgrounds and population structures of Wenchang chickens. Additionally, it identifies multiple candidate genes linked to environmental adaptation, feather color variations, and production traits. These insights not only provide genetic reference for the purification and breeding of Wenchang chickens but also broaden our understanding of the genetic basis of phenotypic diversity in chickens.


Assuntos
Galinhas , Estudo de Associação Genômica Ampla , Animais , Galinhas/genética , Estudo de Associação Genômica Ampla/veterinária , Genômica , Fenótipo , Sorogrupo
6.
J Drug Target ; 32(3): 325-333, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38269592

RESUMO

Dehydrocurvularin (DCV) is a promising lead compound for anti-cancer therapy. Unfortunately, the development of DCV-based drugs has been hampered by its poor solubility and bioavailability. Herein, we prepared a DCV-loaded mPEG-PLGA nanoparticles (DCV-NPs) with improved drug properties and therapeutic efficacy. The spherical and discrete particles of DCV-NPs had a uniform diameter of 101.8 ± 0.45 nm and negative zeta potential of -22.5 ± 1.12 mV (pH = 7.4), and its entrapment efficiency (EE) and drug loading (DL) were ∼53.28 ± 1.12 and 10.23 ± 0.30%, respectively. In vitro the release of DCV-NPs lasted for more than 120 h in a sustained-release pattern, its antiproliferation efficacy towards breast cancer cell lines (MCF-7, MDA-MB-231, and 4T1) was better than that of starting drug DCV, and it could be efficiently and rapidly internalised by breast cancer cells. In vivo DCV-NPs were gradually accumulated in tumour areas of mice and significantly suppressed tumour growth. In summary, loading water-insoluble DCV onto nanoparticles has the potential to be an effective agent for breast cancer therapy with injectable property and tumour targeting capacity.


Assuntos
Neoplasias da Mama , Nanopartículas , Poliésteres , Zearalenona/análogos & derivados , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos , Polietilenoglicóis , Tamanho da Partícula
7.
Chin J Integr Med ; 30(2): 135-142, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37434030

RESUMO

OBJECTIVE: To investigate the effect of Huangqin Decoction (HQD) on nuclear factor erythroid 2 related-factor 2 (Nrf2)/heme oxygenase (HO-1) signaling pathway by inducing the colitis-associated carcinogenesis (CAC) model mice with azoxymethane (AOM)/dextran sodium sulfate (DSS). METHODS: The chemical components of HQD were analyzed by liquid chromatography-quadrupole-time-of-flight mass spectrometry (LC-Q-TOF-MS/MS) to determine the molecular constituents of HQD. Totally 48 C57BL/6J mice were randomly divided into 6 groups by a random number table, including control, model (AOM/DSS), mesalazine (MS), low-, medium-, and high-dose HQD (HQD-L, HQD-M, and HQD-H) groups, 8 mice in each group. Except for the control group, the mice in the other groups were intraperitoneally injected with AOM (10 mg/kg) and administrated with 2.5% DSS orally for 1 week every two weeks (totally 3 rounds of DSS) to construct a colitis-associated carcinogenesis mouse model. The mice in the HQD-L, HQD-M and HQD-H groups were given HQD by gavage at doses of 2.925, 5.85, and 11.7 g/kg, respectively; the mice in the MS group was given a suspension of MS at a dose of 0.043 g/kg (totally 11 weeks). The serum levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were measured by enzyme-linked immunosorbent assay. The mRNA and protein expression levels of Nrf2, HO-1, and inhibitory KELCH like ECH-related protein 1 (Keap1) in colon tissue were detected by quantitative real-time PCR, immunohistochemistry, and Western blot, respectively. RESULTS: LC-Q-TOF-MS/MS analysis revealed that the chemical constituents of HQD include baicalin, paeoniflorin, and glycyrrhizic acid. Compared to the control group, significantly higher MDA levels and lower SOD levels were observed in the model group (P<0.05), whereas the expressions of Nrf2 and HO-1 were significantly decreased, and the expression of Keap1 increased (P<0.01). Compared with the model group, serum MDA level was decreased and SOD level was increased in the HQD-M, HQD-H and MS groups (P<0.05). Higher expressions of Nrf2 and HO-1 were observed in the HQD groups. CONCLUSION: HQD may regulate the expression of Nrf2 and HO-1 in colon tissue, reduce the expression of MDA and increase the expression of SOD in serum, thus delaying the progress of CAC in AOM/DSS mice.


Assuntos
Antioxidantes , Colite , Camundongos , Animais , Antioxidantes/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Scutellaria baicalensis/química , Scutellaria baicalensis/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espectrometria de Massas em Tandem , Camundongos Endogâmicos C57BL , Colite/complicações , Colite/tratamento farmacológico , Colite/metabolismo , Transdução de Sinais , Carcinogênese , Azoximetano/farmacologia , Superóxido Dismutase/metabolismo
8.
IEEE Trans Radiat Plasma Med Sci ; 7(1): 18-32, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38106623

RESUMO

We constructed a prototype positron emission tomography (PET) system and experimentally evaluated large-volume 3-D cadmium zinc telluride (CZT) detectors for potential use in Compton-enhanced PET imaging. The CZT spectrometer offers sub-0.5-mm spatial resolution, an ultrahigh energy resolution (~1% @ 511 keV), and the capability of detecting multiple gamma-ray interactions that simultaneously occurred. The system consists of four CZT detector panels with a detection area of around 4.4 cm × 4.4 cm. The distance between the front surfaces of the two opposite CZT detector panels is ~80 mm. This system allows us to detect coincident annihilation photons and Compton interactions inside the detectors and then, exploit Compton kinematics to predict the first Compton interaction site and reject chance coincidences. We have developed a numerical integration technique to model the near-field Compton response that incorporates Doppler broadening, detector's finite resolutions, and the distance between the first and second interactions. This method was used to effectively reject random and scattered coincidence events. In the preliminary imaging studies, we have used point sources, line sources, a custom-designed resolution phantom, and a commercial image quality (IQ) phantom to demonstrate an imaging resolution of approximately 0.75 mm in PET images, and Compton-based enhancement.

9.
Discov Oncol ; 14(1): 185, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857728

RESUMO

Myeloid-derived suppressor cells (MDSCs), major components maintaining the immune suppressive microenvironment in lung cancer, are relevant to the invasion, metastasis, and poor prognosis of lung cancer, through the regulation of epithelial-mesenchymal transition, remodeling of the immune microenvironment, and regulation of angiogenesis. MDSCs regulate T-cell immune functions by maintaining a strong immunosuppressive microenvironment and promoting tumor invasion. This raises the question of whether reversing the immunosuppressive effect of MDSCs on T cells can improve lung cancer treatment. To understand this further, this review explores the interactions and specific mechanisms of different MDSCs subsets, including regulatory T cells, T helper cells, CD8 + T cells, natural killer T cells, and exhausted T cells, as part of the lung cancer immune microenvironment. Second, it focuses on the guiding significance confirmed via clinical liquid biopsy and tissue biopsy that different MDSC subsets improve the prognosis of lung cancer. Finally, we conclude that targeting MDSCs through action targets or signaling pathways can help regulate T-cell immune functions and suppress T-cell exhaustion. In addition, immune checkpoint inhibitors targeting MDSCs may serve as a new approach for enhancing the efficiency of immunotherapy and targeted therapy for lung cancer in the future, providing better comprehensive options for lung cancer treatment.

10.
J Cancer ; 14(14): 2700-2706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779869

RESUMO

Aims The aim of this study was to investigate the anti-tumor efficacy of brucine on intrahepatic cholangiocarcinoma (ICC). Methods ICC QBC939 cells were treated with brucine, cell viability, cell cycle and apoptosis were analyzed using CCK-8 and flow cytometry. The expression of COX-2 and apoptosis related proteins Casp3, Bax and Bcl-2 were detected by Western blot analysis. QBC939 cells were subcutaneously transplanted into nude mice and the mice were injected with brucine intraperitoneally. The expression of Ki67, COX-2 and apoptosis related proteins were detected by immunohistochemical staining and Western blot analysis. Results Brucine significantly inhibited the proliferation and cell cycle progression while promoted the apoptosis of QBC939 cells. The expression of the apoptotic proteins Casp3 and Bax was upregulated, while the expression of Bcl-2 and COX-2 was downregulated in QBC939 cells with brucine treatment. Moreover, the overexpression of COX-2 could antagonize the effects of brucine on QBC939 cells. In vivo, brucine inhibited subcutaneous tumor formation in nude mice, and the expression of Ki67, COX-2 and Bcl-2 decreased while the expression of Casp3 and Bax increased in tumor tissues from nude mice with brucine treatment. Conclusions Brucine can significantly inhibit the progression of cholangiocarcinoma in vitro and in vivo, and the mechanism may be related to the inhibition of COX-2 expression.

11.
Eur J Radiol ; 168: 111094, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37738836

RESUMO

OBJECTIVES: To evaluate the changes in clinical characteristics, overall survival (OS), and progression-free survival (PFS) by investigating a 20-year cohort of patients with HCC who underwent RFA treatment. METHODS: From 2000 to 2020, 505 consecutive patients with HCC underwent ultrasound-guided percutaneous RFA as first-line therapy at a tertiary cancer hospital. We divided the cohort according to the time when hepatitis-B antiviral therapy was covered by national medical insurance coverage (early 2011), including the first decade (2000-2010) and second decade (2011-2020). The prognostic factors for OS were analyzed by the Cox proportional hazard model. OS and PFS in different groups were compared using the Kaplan-Meier method. To reduce selection bias, matched groups of patients were selected using the propensity score matching (PSM) method. RESULTS: In total, 726 RFA sessions were performed to treat 867 HCC lesions. Patients treated in the second decade were younger (p =.047), had smaller tumors (p <.001), had lower Child-Pugh scores (p <.001), and had a higher proportion of antiviral treatment (p <.001). A total of 96.0% of patients achieved technical efficacy from the initial RFA. After PSM analysis, improved PFS was found for the second decade (median, 68 vs. 49 months, p =.003), but no significant difference in OS was observed between the two groups (median, 71 vs. 65 months, p =.20). CONCLUSIONS: This study demonstrated that improved PFS was achieved in patients with HCC receiving RFA as first-line treatment in the second decade. However, long-term OS was not significantly increased compared to the first decade suggesting that while RFA treatment has improved, it still might not substantially affect OS results.


Assuntos
Carcinoma Hepatocelular , Ablação por Cateter , Neoplasias Hepáticas , Ablação por Radiofrequência , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Resultado do Tratamento , Ablação por Cateter/métodos , Estudos Retrospectivos , Ablação por Radiofrequência/métodos
12.
Nat Cancer ; 4(10): 1455-1473, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37653141

RESUMO

Glioblastoma (GBM) tumors are enriched in immune-suppressive myeloid cells and are refractory to immune checkpoint therapy (ICT). Targeting epigenetic pathways to reprogram the functional phenotype of immune-suppressive myeloid cells to overcome resistance to ICT remains unexplored. Single-cell and spatial transcriptomic analyses of human GBM tumors demonstrated high expression of an epigenetic enzyme-histone 3 lysine 27 demethylase (KDM6B)-in intratumoral immune-suppressive myeloid cell subsets. Importantly, myeloid cell-specific Kdm6b deletion enhanced proinflammatory pathways and improved survival in GBM tumor-bearing mice. Mechanistic studies showed that the absence of Kdm6b enhances antigen presentation, interferon response and phagocytosis in myeloid cells by inhibition of mediators of immune suppression including Mafb, Socs3 and Sirpa. Further, pharmacological inhibition of KDM6B mirrored the functional phenotype of Kdm6b-deleted myeloid cells and enhanced anti-PD1 efficacy. This study thus identified KDM6B as an epigenetic regulator of the functional phenotype of myeloid cell subsets and a potential therapeutic target for enhanced response to ICT.


Assuntos
Glioblastoma , Humanos , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Histona Desmetilases/genética , Perfilação da Expressão Gênica , Fenótipo , Histona Desmetilases com o Domínio Jumonji/genética
13.
Beilstein J Org Chem ; 19: 998-1007, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404799

RESUMO

Five new eudesmane-type sesquiterpenoids (aquisinenoids F-J (1-5)) and five known compounds (6-10) were isolated from the agarwood of Aquilaria sinensis. Their structures, including absolute configurations, were identified by comprehensive spectroscopic analyses and computational methods. Inspired by our previous study on the same kinds of skeletons, we speculated that the new compounds have anticancer and anti-inflammatory activities. The results did not show any activity, but they revealed the structure-activity relationships (SAR).

14.
Cell Signal ; 109: 110795, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37406788

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease and a severe form of pulmonary fibrosis. Epithelial-mesenchymal transition (EMT) of alveolar epithelial cells is induced in response to epithelial injury, which leads to the accumulation of extracellular matrix in the lung parenchyma and contributes to pulmonary fibrosis. NPAS2 (neuronal PAS domain protein 2) is significantly increased in the lung tissues of IPF patients according to microarray dataset GSE10667 and NPAS2 is downregulated in differentiated human pulmonary type 2 epithelial cells in vitro based on microarray dataset GSE3306 from Gene Expression Omnibus (GEO). In this study, we demonstrated that NPAS2 was increased in bleomycin (BLM)- induced fibrotic lungs in mice. Knockdown of NPAS2 inhibited EMT in primary mouse lung alveolar type 2 epithelial (pmATII) cells and human lung alveolar type 2 epithelial cell line A549 cells under BLM challenge in vitro. Moreover, the silence of NPAS2 alleviated the BLM-induced pulmonary fibrosis in a murine model. Mechanistically, NPAS2 promotes EMT through positively regulating hairy and enhancer of split 1 (HES1) expression. In this study, we present novel findings that have not been previously reported, emphasizing that p53 transcriptionally activates NPAS2 in ATII cells and overexpression of NPAS2 weakens the effects of TP53 knockdown on EMT of pmATII and A549 cells. Our results suggest NPAS2 is a novel target gene of p53 in regulating BLM-mediated EMT in ATII cells and pulmonary fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Fibrose Pulmonar Idiopática , Humanos , Camundongos , Animais , Transição Epitelial-Mesenquimal/genética , Regulação para Baixo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Bleomicina/metabolismo , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
15.
Front Pediatr ; 11: 1143262, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37266536

RESUMO

Introduction: The clinical manifestations of paragonimiasis are diverse and non-specific, and can easily lead to misdiagnosis. We aimed to analyze the clinical manifestations, laboratory features, treatment, and clinical outcome of children with paragonimiasis in order to improve recognition of this disease and avoid misdiagnosis. Methods: Children diagnosed with paragonimiasis from August 2016 to July 2022 were included in the study. Information on population informatics, medical history, and laboratory features was extracted from case data. The clinical features of paragonimiasis were retrospectively analyzed. Results: A total of 45 children were included in this study. All children had, at least, one risk factor. The clinical features mainly included fever, cough, pleural effusion, peritoneal effusion, and subcutaneous nodules. The main imaging findings were alveolar exudation, peritoneal effusion, pleural thickening, and local nodules. The "tunnel sign" finding on computed tomography (CT)/magnetic resonance imaging (MRI) was helpful in establishing the diagnosis of paragonimiasis. After praziquantel treatment, most of the children improved, and one child with cerebral paragonimiasis experienced sequelae. Conclusion: Most children with paragonimiasis have a good prognosis, but few children can experience sequelae. Avoidance of untreated water and raw food is a simple, feasible, and effective preventive measure.

17.
Biochem Biophys Res Commun ; 663: 61-70, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37119767

RESUMO

Articular cartilage (AC) is most susceptible to degeneration in knee osteoarthritis (OA); however, the existing treatments for OA do not target the core link of the pathogenesis-"decreased tissue cell function activity and extracellular matrix (ECM) metabolic disorders" for effective intervention. iMSC hold lower heterogeneity and great promise in biological research and clinical applications. Rps6ka2 may play an important role in the iMSC to treat OA. In this study, the CRISPR/Cas9 gene editing Rps6ka2-/- iMSC were obtained. Effect of Rps6ka2 on iMSC proliferation and chondrogenic differentiation was evaluated in vitro. An OA model was constructed in mice by surgical destabilization of medial meniscus (DMM). The Rps6ka2-/- iMSC and iMSC were injected into the articular cavity twice-weekly for 8 weeks. In vitro experiments showed that Rps6ka2 could promote iMSC proliferation and chondrogenic differentiation. In vivo results further confirmed that Rps6ka2 could improve iMSC viability to promote ECM production to attenuate OA in mice.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Camundongos , Animais , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/terapia , Osteoartrite do Joelho/metabolismo , Cartilagem Articular/metabolismo , Diferenciação Celular/genética , Matriz Extracelular , Condrócitos/metabolismo , Modelos Animais de Doenças
18.
J Transl Med ; 21(1): 212, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949448

RESUMO

BACKGROUND: COVID-19, the current global pandemic caused by SARS-CoV-2 infection, can damage the heart and lead to heart failure (HF) and even cardiac death. The 2',5'-oligoadenylate synthetase (OAS) gene family encode interferon (IFN)-induced antiviral proteins which is associated with the antiviral immune responses of COVID-19. While the potential association of OAS gene family with cardiac injury and failure in COVID-19 has not been determined. METHODS: The expression levels and biological functions of OAS gene family in SARS-CoV-2 infected cardiomyocytes dataset (GSE150392) and HF dataset (GSE120852) were determined by comprehensive bioinformatic analysis and experimental validation. The associated microRNAs (miRNAs) were explored from Targetscan and GSE104150. The potential OAS gene family-regulatory chemicals or ingredients were predicted using Comparative Toxicogenomics Database (CTD) and SymMap database. RESULTS: The OAS genes were highly expressed in both SARS-CoV-2 infected cardiomyocytes and failing hearts. The differentially expressed genes (DEGs) in the two datasets were enriched in both cardiovascular disease and COVID-19 related pathways. The miRNAs-target analysis indicated that 10 miRNAs could increase the expression of OAS genes. A variety of chemicals or ingredients were predicted regulating the expression of OAS gene family especially estradiol. CONCLUSION: OAS gene family is an important mediator of HF in COVID-19 and may serve as a potential therapeutic target for cardiac injury and HF in COVID-19.


Assuntos
COVID-19 , Insuficiência Cardíaca , MicroRNAs , Humanos , COVID-19/complicações , COVID-19/genética , SARS-CoV-2 , Insuficiência Cardíaca/genética , Antivirais , MicroRNAs/genética
19.
Int J Biol Sci ; 19(4): 1123-1145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923940

RESUMO

Background: Low-intensity pulsed ultrasound (LIPUS, a form of mechanical stimulation) can promote skeletal muscle functional repair, but a lack of mechanistic understanding of its relationship and tissue regeneration limits progress in this field. We investigated the hypothesis that specific energy levels of LIPUS mediates skeletal muscle regeneration by modulating the inflammatory microenvironment. Methods: To address these gaps, LIPUS irritation was applied in vivo for 5 min at two different intensities (30mW/cm2 and 60mW/cm2) in next 7 consecutive days, and the treatment begun at 24h after air drop-induced contusion injury. In vitro experiments, LIPUS irritation was applied at three different intensities (30mW/cm2, 45mW/cm2, and 60mW/cm2) for 2 times 24h after introduction of LPS in RAW264.7. Then, we comprehensively assessed the functional and histological parameters of skeletal muscle injury in mice and the phenotype shifting in macrophages through molecular biological methods and immunofluorescence analysis both in vivo and in vitro. Results: We reported that LIPUS therapy at intensity of 60mW/cm2 exhibited the most significant differences in functional recovery of contusion-injured muscle in mice. The comprehensive functional tests and histological analysis in vivo indirectly and directly proved the effectiveness of LIPUS for muscle recovery. Through biological methods and immunofluorescence analysis both in vivo and in vitro, we found that this improvement was attributable in part to the clearance of M1 macrophages populations and the increase in M2 subtypes with the change of macrophage-mediated factors. Depletion of macrophages in vivo eliminated the therapeutic effects of LIPUS, indicating that improvement in muscle function was the result of M2-shifted macrophage polarization. Moreover, the M2-inducing effects of LIPUS were proved partially through the WNT pathway by upregulating FZD5 expression and enhancing ß-catenin nuclear translocation in macrophages both in vitro and in vivo. The inhibition and augment of WNT pathway in vitro further verified our results. Conclusion: LIPUS at intensity of 60mW/cm2 could significantly promoted skeletal muscle regeneration through shifting macrophage phenotype from M1 to M2. The ability of LIPUS to direct macrophage polarization may be a beneficial target in the clinical treatment of many injuries and inflammatory diseases.


Assuntos
Contusões , Cicatrização , Camundongos , Animais , Músculo Esquelético/patologia , Ondas Ultrassônicas , Via de Sinalização Wnt , Inflamação/terapia , Contusões/patologia
20.
Adv Healthc Mater ; 12(19): e2203118, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36929289

RESUMO

Owing to the serious clinical side effects of intravenous Taxol, an oral chemotherapeutic strategy is expected to be promising for paclitaxel (PTX) delivery. However, its poor solubility and permeability, high first-pass metabolism, and gastrointestinal toxicity need to be overcome. A triglyceride (TG)-like prodrug strategy facilitates oral drug delivery by bypassing liver metabolism. However, the effect of fatty acids (FAs) in sn-1,3 on the oral absorption of prodrugs remains unclear. Herein, a series of TG-mimetic prodrugs of PTX is explored with different carbon chain lengths and degrees of unsaturation of FAs at the sn-1,3 position in an attempt to enhance oral antitumor effect and to guide the design of TG-like prodrugs. Interestingly, the different FA lengths exhibit great influence on in vitro intestinal digestion behavior, lymph transport efficiency, and up to fourfold differences in plasma pharmacokinetics. The prodrug with long-chain FAs shows a more effective antitumor effect, whereas the degree of unsaturation has a negligible impact. The findings illustrate how FAs structures affect the oral delivery efficiency of TG-like PTX prodrugs and thus provide a theoretical basis for their rational design.


Assuntos
Pró-Fármacos , Pró-Fármacos/química , Paclitaxel/química , Ácidos Graxos , Sistemas de Liberação de Medicamentos , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...